

Principi di Bioingegneria A.A. 2024/25 Lezione

Simulazioni numeriche

Vincenzo Catrambone, PhD

vincenzo.catrambone@unipi.it

Derivazione numerica

Predizione numerica

ODE in MATLAB

Simulink

Metodo dei rettangoli:

Si calcola l'integrale di una funzione come sommatoria delle aree dei rettangoli individuati da intervalli definiti sul dominio della funzione e altezza pari al valore ottenuto dalla funzione nel punto medio dell'intervallo

Altre due varianti: altezza su punto sinistro, altezza su punto destro

Metodo dei trapezi: Le aree delle sezioni vengono calcolate come aree di trapezi rettangoli

trapz(x,y): applica il metodo dei trapezi per calcolare l'integrale di y(x). y deve contenere i valori della funzione in corrispondenza dei punti contenuti in x.

Es. >> x = 0:0.1:pi; >> y = sin(x); >> trapz(x,y)

quad('fun',a,b,tol) : Applica la regola di Simpson per calcolare l'integrale di *'fun'* tra *a* e *b*. *tol* (tolleranza di errore) è opzionale

$$\mathcal{I}_{CS}(f) = \frac{(b-a)}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

quadl('fun',a,b,tol) : Applica il metodo di quadratura di Gauss-Legendre-Lobatto. Sintassi analoga a quad.

$$\mathcal{I}_G^c(f) = \frac{H}{2} \sum_{k=1}^N \sum_{i=0}^n w_i f(x_{ki}) \quad H = \frac{b-a}{N}$$

Derivazione numerica

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivazione numerica

Principi di Bioingegneria - A.A. 2024/25

Metodi di predizione: metodo di Eulero

Il metodo delle differenze, e relative varianti portano poi alla definizione del metodo di Eulero, che sfrutta la stima della derivata di una funzione per predire i valori che la funzione assume in zone del dominio non (ancora) campionate.

f(y,t) può essere stimata con qualunque dei metodi espressi in precedenza e si applica in modo da ottenere

 $\widehat{y_{n+1}} = y_n + hf(y_n, t)$

poi in maniera ricorsiva

 $\widehat{y_1} = y_0 + hf(y_0, t_0)$ $\widehat{y_2} = y_1 + hf(y_1, t_1)$

 \hat{y}_i è il valore stimato predetto y_i è il valore reale

$$\widehat{y_n} = y_{n-1} + hf(y_{n-1}, t_{n-1})$$

Dove *h* è lo step size ed è legato a $t_{n+1} - t_n$: può essere ridotto in modo da avere una griglia temporale più fine ma incide sulla precisione della **soluzione**ngegneria - A.A. 2024/25

Metodo di Eulero Modificato (o del punto medio esplicito)

Più accurato e stabile di quello di Eulero in avanti

Si usa la conoscenza della derivate nel punto medio tra t_n e t_{n+1} (e non quella in t_n) per calcolare il valore di y_{n+1}

Per conoscere il valore di y nel punto medio tra $t_n \in t_{n+1}$ possiamo usare Eulero e usare la derivate nel punto iniziale

$$y_{n+1} = y_n + hf\left(y_n + \frac{h}{2}f(y_n, t_n), t_n + \frac{h}{2}\right)$$

si potrebbe anche usare una stima della derivata nel punto medio (metodo implicito)

Metodo di Eulero

Soluzione teorica in blu dell'equazione

in verde il metodo di Eulero in avanti e in nero tratteggiato il metodo di Eulero modificato o del punto medio esplicito

Metodo Runge-Kutta

In questo caso il punto al tempo n+1 viene stimato utilizzando le stime delle derivate nel punto iniziale, due stime differenti della derivata nel punto medio e quella nel punto finale, pesate in modo diverso. E' un metodo basato sullo sviluppo in serie di Taylor della funzione f(y(t),t)

$$\frac{dy_n}{dt} = f(y_n, t_n) \quad \text{dove } y_n = y(t_n)$$

$$k_1 = f(y_n, t_n)$$

$$k_2 = f\left(y_n + \frac{k_1}{2}, t_n + \frac{h}{2}\right)$$

$$k_3 = f\left(y_n + \frac{k_2}{2}, t_n + \frac{h}{2}\right)$$

$$k_4 = f(y_n + k_3, t_n + h)$$

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3)$$

Principi di Bioingegneria - A.A. 2024/25

 $+k_{4}$)

Solver	Accuracy	Description
ode45	Medium	This should be the first solver you try
ode23	Low	Less accurate than ode45
ode113	Low to high	For computationally intensive problems
ode15s	Low to medium	Use if ode45 failed

ODE in MATLAB

ODE: Ordinary Differential Equation

[t,y] = ode23('ydot', tspan, y0) Risolve l'equazione differenziale y'=f(t,y) specificata nel file di funzione ydot, i cui input sono t ed y e il cui output è un vettore colonna che rappresenta dy/dt, cioè f(t,y). Il vettore tspan contiene i valori iniziale e finale della variabile t. y0 rappresenta il valore iniziale y(t0). Analogo per le altre funzioni odeXY

Soluzione di y' = sin(t), con y(0) = 0

Simulink è un programma costruito utilizzano i comandi di MATLAB, consente la realizzazione di modelli per la simulazione dinamica per via grafica

Vantaggi:

- Interfaccia grafica
- Blocchi predefiniti solamente da connettere
- Elevata flessibilità nella variazione del progetto
- Riduzione dei tempi di progetto
- Riduzione dei costi rispetto a un test pratico

Per accedere a Simulink basta digitare simulink dal prompt di MATLAB, o fare click sull'icona

MATLAB R2020b - academic use											
HOME	PL	OTS	APPS					h i t t c 🗗	🕐 💿 Sea	arch Documentat	ion 🔎
New N Script Live	lew Ne Script 👻	• 🔄 w Oper	Find Files	Import Data	Save Workspace	 Bew Variable Dpen Variable ▼ Clear Workspace ▼ 	Favorites	Analyze Code	Simulink	ENVIRONMENT	RESOURCES
	FI	LE			VA	RIABLE		CODE	SIMULINK	· · · · ·	•
Current Folde	Current Folder 💿 Command Window 🐨 Workspace										

Ciascuna linea di connessione corrisponde ad un segnale. I vari blocchi applicano ai segnali in ingresso determinate operazioni matematiche, e producono in uscita segnali risultanti da tali elaborazioni.

Apre un modello Simulink vuoto avente le proprietà di default

La realizzazione di modelli di simulazione dinamica avviene per via grafica assemblando fra loro all'interno della pagina di lavoro un certo numero di blocchi Simulink, in modo da implementare le funzionalità desiderate. I blocchi Simulink sono allocati all'interno di librerie. E' possibile accedere al «Library browser» cliccando il relativo pulsante nella finestra che ospita il modello in bianco (Menu: «SIMULATION»)

Nelle librerie sono presenti i blocchi elementari che si possono usare nel progetto.

- Nel workspace si costruisce il progetto interconnettendo i blocchi presi dalla librerie.
- I vari elementi si portano nel workspace semplicemente trascinandoli dentro come se fossero icone.

• Le librerie sono Read-only. Per poter variare i parametri di un blocco occorre prima trascinarlo nel workspace.

• Facendo doppio click sull'icona trascinata nel workspace si apre una maschera che ci consente di impostare i parametri che caratterizzano il segnale

Simulink Library Browser

Contiene le librerie di blocchi elementari SIMULINK, da quelli di base fino a quelli più sofisticati orientati a particolari applicazioni

Simulink: libraries

La prima libreria della lista è la Libreria **"Commonly used blocks**"

E' una libreria che contiene un insieme di blocchi che implementano funzionalità variegate e che vengono impiegati particolarmente di frequente nei modelli di simulazione.

Simulink Library Browser					- 0	\times
← workspace ✓	?					
Simulink/Commonly Used Blocks						
 Simulink/Commonly Used Blocks Commonly Used Blocks Continuous Dashboard Discontinuities Discrete Logic and Bit Operations Lookup Tables Math Operations Messages & Events Model Verification Model-Wide Utilities Ports & Subsystems Signal Attributes Signal Routing Sinks Sources String User-Defined Functions Additional Math & Discrete Quick Insert Audio Toolbox Communications Toolbox HDL Support 		Bus Creator 2^{-1} Delay Ground Mux Saturation Saturation	Bus Selector Demux 1 In1 Nu1 Out1 VI Scope Scope Demux	1 Constant $ \begin{array}{c} $	convert Data Type Conversion i f Gain i Gain i Gain i Gain i Gain i Gain i Gain i Gain i Gain G	
 Communications Toolbox HDL Support Computer Vision Toolbox Data Acquisition Toolbox Deep Learning Toolbox 		Switch	Terminator	Vector Concatenate		

Simulink: libraries

Fa le svariate librerie, le più utilizzate sono:

• Sources: Blocchi che generano segnali di vario genere

- Sinks: Blocchi per la visualizzazione grafica dei segnali
- Math: Blocchi per l'elaborazione matematica dei segnali
- Continuous: Blocchi per l'inserimento di funzioni di trasferimento

Simulink: Libreria Sources

Tra le varie Sources:

- Constant: genera un valore costante.
- **Step:** genera un gradino.
- Ramp: genera una rampa.
- Sine wave: genera una sinusoide.
- From workspace: il riferimento può essere generato in precedenza nel workspace e passato come [tempo, valore], dove tempo e valore sono due vettori colonna di uguale lunghezza
- Repeating sequence
- Clock: Scandisce gli istanti di tempo della simulazione

Repeating Sequence Interpolated

23

Simulink: Libreria Sinks

Un insieme di strumenti che consente di visualizzare l'andamento di un segnale. I blocchi più importanti sono:

• **Scope:** Visualizza il segnale di ingresso in funzione del tempo.

- **XYGraph:** Genera un grafico del segnale connesso all'ingresso y (il secondo) in funzione di quello connesso all'ingresso x (il primo).
- **To Workspace:** Memorizza i valori del segnale connesso in una variabile MATLAB da usare poi per altri codici/funzioni.

Per visualizzare l'andamento rispetto al tempo delle variabili, è necessario salvare in un'ulteriore variabile un vettore che scandisca gli istanti temporali della simulazione. Questo è possibile inserendo il blocco clock e collegandone l'uscita a un blocco To Workspace nello schema Simulink.

Simulink: Funzioni di trasferimento

Per inserire una funzione di trasferimento nello schema Simulink si utilizzano i blocchi presenti nella libreria **Continuous**:

• **Transfer Fcn:** consente di editare una funzione di trasferimento immettendo il numeratore e il denominatore. Numeratore e denominatore sono rappresentati da due vettori che esprimono i coefficienti, secondo potenze discendenti di *s*, del polinomio corrispondente.

• Zero-Pole: consente di editare una funzione di trasferimento specificando i suoi zeri e i suoi poli. Numeratore e denominatore sono rappresentati da due vettori i cui elementi rappresentano rispettivamente gli zeri e i poli della

funzione di trasferimento.

Se la funzione da inserire è un semplice integratore è già presente il blocco che lo implementa.

Se inseriamo nella maschera i vettori:

- Numerator: [1 2]
- Denominator: [1 2 3]

Otteniamo rispettivamente:

🙀 Function Block Parameters: Transfer Fon	×
- Transfer Fon-	-
Matrix expression for numerator, vector expression for denominator. Dutput width equals the number of rows in the numerator. Coefficients are for descending powers of	
Parameters	
Numerator:	
[1 2]	
Denominator.	
[1 2 3]	
Absolute tolerance:	
auto	
DK Cancel Help Apply	Ď

Ogni blocco prevede un set di uno o più parametri di configurazione (ad esempio, per il blocco «Gain» il valore del guadagno). I parametri di configurazione di un blocco sono settati all'interno di una finestra di configurazione alla quale si accede facendo doppio click sul blocco.

Realizzazione di un modello Simulink

- Importare nella pagina di lavoro i blocchi elementari Simulink necessari trascinandoli con il mouse dalla rispettiva libreria (drag and drop)
- Parametrizzare i blocchi Simulink nelle rispettive finestre di parametrizzazione, alle quali si accede facendo doppio click con il mouse sopra il blocco stesso.
- Collegare tra loro i blocchi Simulink tracciando le opportune linee di interconnessione in modo da realizzare le funzionalità desiderate

Simulink: Esempio

Costruzione e visualizzazione di un segnale sinusoidale

Sono sufficienti due blocchi elementari: un blocco che generi il segnale desiderato, ed un blocco che ne permetta la visualizzazione.

Il primo blocco lo troveremo anche nella libreria "Sources" (blocco Sine Wave).

Il secondo blocco (blocco Scope), si trova nella libreria dei Commonly Used Blocks ma anche nella libreria "Sinks"

I blocchi necessari vanno importati nella pagina di lavoro Untitled con drag and drop dell'icona del blocco all'interno della pagina di lavoro Importiamo il blocco Sine Wave

Si vuole generare il segnale s = 10+5sin(t)

Per impostare i parametri della sinusoide fare doppio click sul blocco Si apre una finestra di dialogo all'interno della quale vanno impostati i suoi parametri di funzionamento

Impostare poi le connessioni

		O(t) - Amp*Sin(Freq*t+Phase) + Bias
4	in titled	Sine type determines the computational technique used. The
~		parameters in the two types are related through:
۲	untitled	Samples per period = 2*pi / (Frequency * Sample time)
		Number of offset samples = Phase * Samples per period / (2*pi)
Θ		Use the sample-based sine type if numerical problems due to running for large times (e.g. overflow in absolute time) occur.
5 7		Parameters
12 2		Sine type: Time based -
_		Time (t): Use simulation time -
_5		Amplitude:
_		1
AΞ		Bias:
0.		Frequency (rad/sec):
		L :
		Phase (Idu).

Output a sine wave:

OK

Cance

Impostare nella casella **Stop Time** la durata della simulazione (il valore di default è 10 secondi), e cliccare sul **pulsante Run** per avviare la simulazione.

🎦 untitled * - Simulink academic use								
s	IMULATION	DEBUG	MODELING	FORMAT	APPS			
Nev	Open ▼ W Arrow Save ▼ Print ▼	Library Browser	Log Signals	Add Viewer	Stop Time 5 Normal • Fast Restart	Step Back		
Model Browser			•]	<u> </u>			

Al termine della simulazione fare doppio click sul blocco Scope per visualizzare il segnale in una finestra grafica:

Grafico "spigoloso"

Il grafico è stato realizzato interpolando un numero di punti insufficiente

Si deve andare a modificare il "solver", che definisce (fra le altre cose) il passo di discretizzazione temporale che viene impiegato nella esecuzione del modello

Fare click con il tasto destro in qualunque punto dello schema e scegliere dal menu «Model Configuration Parameters »

Per visualizzare un segnale costituito dalla **somma di tre sinusoidi** importiamo nella pagina di lavoro due nuove istanze del blocco elementare Sine Wave, ed importiamo anche un blocco che rappresenti un nodo sommatore (blocco Sum dalla libreria dei Commonly Used Blocks).

Il blocco Sum è parametrizzato per mezzo di una stringa (es. ++-+-+) la cui lunghezza corrisponde al numero di segnali in ingresso al blocco mentre il segno + o - definisce se il corrispondente ingresso sia da sommare agli altri termini o da sottrarre.

🖬 Function Block Parameters: Sum 📃	
Sum Add or subtract inputs. Specify one of the following: a) string containing + or - for each input port, for spacer between ports (e.g. ++ - ++) b) scalar, > - 1, specifies the number of input ports to be summed. When there is only one input port, add or subtract elements over all dimensions or one specified dimension	•
Main Signal Attributes Icon shape: rectangular Ulst of signs: +++	E
Sample time (-1 for inherited): -1	
CK Cancel Help Apply	•

Scegliamo +++ e impostiamo la lcon shape in rectangular. L'aspetto del blocco diventa

	sin(2t)	0.5 cos(4t)	0.25 sin(10t - 0.1).
Amplitude	1	0.5	0.25
Bias	0	0	0
Frequency	2	4	10
Phase	0	pi / 2	-0.1

N.B. $cos(at) = sin(at + \pi/2)$

$\sin(2t) + 0.5\cos(4t) + 0.25\sin(10t - 0.1).$