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Viscoelasticity

• Viscoelastic materials exhibit the characteristics of both elastic and viscous materials

– Viscosity → resistance to flow (damping)

– Elasticity → ability to revert back to the original shape

• Elastic vs. viscoelastic stress-strain response



Methods to characterise viscoelasticity

• Time domain
– Creep response

– Stress relaxation

• Frequency domain
– Dynamic mechanical analysis (DMA)

– Dynamic mechanical thermal analysis (DMTA)

• Strain-rate domain
– Epsilon dot Method

• Stress-rate domain
– Sigma dot Method



Dynamic mechanical analysis (DMA)

• Dynamic mechanical analysis (DMA) is a standard force-triggered method to determine

viscoelastic properties of materials by applying a small amplitude cyclic strain on a

sample and measuring the resultant cyclic stress response.



Dynamic mechanical analysis (DMA)

• For a given sinusoidal strain input the resulting stress will be sinusoidal if the applied strain

is small enough so that the tissue can be approximated as linearly viscoelastic.

Viscoelastic material response is characterised by a phase lag (δ)
between the strain input and the stress response, which is
comprised between 0° (purely elastic) and 90° (purely viscous). This
phase lag is due to the excess time necessary for molecular motions
and relaxations to occur.



Complex, storage and loss moduli

• The dynamic mechanical properties are quantified with the complex modulus (𝑬∗ ),

which can be thought as an overall resistance to deformation under dynamic loading.

The complex modulus is composed of the storage (𝑬′, elastic component) and the loss

( 𝑬′′ , viscous component) moduli, that are additive under the linear theory of

viscoelasticity (𝑬∗ = 𝑬′ + 𝒊𝑬′′).

𝑬′′ ~ energy dissipated 
in internal motions

𝑬′ ~ elastic energy 
conserved



Definitions

• It is convenient to represent the sinusoidal stress and strain functions as complex

quantities (called rotating vectors, or phasors) with a phase shift of δ.

𝜎 = 𝜎0 𝑒
𝑖(ω𝑡+𝛿)𝜀 = 𝜀0 𝑒

𝑖ω𝑡

Rotating vector representation of harmonic stress and strain

𝑬∗ =
𝜎

𝜀
=
𝜎0
𝜀0
𝑒𝑖𝛿 =

=
𝜎0
𝜀0
(cos 𝛿 + 𝑖 sin 𝛿) =

= 𝑬′ + 𝒊𝑬′′

Observable 𝜎 and 𝜀 can be viewed
as the projection on the real axis
of vectors rotating in the complex
plane at the same frequency ω

Storage modulus Loss modulus

𝐸′ = 𝐸∗ 𝑐𝑜𝑠 𝛿 𝐸′′ = 𝐸∗ 𝑠𝑖𝑛 𝛿

tan δ = 𝐸′′/𝐸′

Τ𝜂′ = 𝐸′′ 𝜔

Damping factor

Dynamic 
viscosity



Test modes

• Temperature sweep: Modulus and damping are recorded as the sample is heated

• Frequency sweep: Modulus and damping are recorded as the sample is loaded at 

increasing (or decreasing) frequencies

• Stress amplitude sweep: Modulus and damping are recorded as the sample stress is 

increased

• Strain amplitude sweep: Modulus and damping are recorded as the sample strain is 

increased

• Combined sweep: Combinations of above methods



Frequency sweep tests

• A sample is held to a fixed temperature and tested at varying frequency.

• Peaks in 𝐭𝐚𝐧 𝜹 or 𝑬′′ with respect to frequency identify the characteristic relaxation

frequencies of the viscoelastic sample under testing, defined as

𝒇 = 𝟏/𝝉 (where 𝝉 is the characteristic relaxation time)

𝒇 = 𝟏/𝝉

Test parameters:
• Temperature (T)
• Frequency range (f)
• Static strain (𝜀𝑠)
• Dynamic strain (𝜀𝑑)

𝜀𝑠

𝜀𝑑

𝜀

𝑡𝑖𝑚𝑒



Lumped models to describe linear viscoelastic response

• The most general form of linear viscoelastic model is called the Generalised Maxwell

(GM) model and consists of a pure spring (𝑬𝟎) with 𝒏 Maxwell arms (i.e. spring 𝐸𝑖 in series

with a dashpot 𝜂𝑖) assembled in parallel, thus defining a set of 𝒏 different characteristic

relaxation times (i.e. 𝝉𝒊 = 𝜼𝒊/𝑬𝒊)

𝐻𝐺𝑀 𝑠 =
ത𝜎

ҧ𝜖
= 𝐸0 +෍

𝑖=𝑖

𝑛
𝐸𝑖 𝜂𝑖 𝑠

𝐸𝑖 + 𝜂𝑖 𝑠

GM model transfer function in the Laplace domain



Lumped parameters derivation from frequency sweep

• Calculate the complex conjugate of the GM modulus (𝑬𝑮𝑴
∗ ) by substituting 𝑠 = 𝑖 𝜔 = 𝑖 2𝜋𝑓 in 𝐻𝐺𝑀 𝑠 ,

then split the expression into its real (Re) and imaginary (Im) parts to obtain the frequency-
dependent relations for the storage and loss moduli, respectively

• Global fitting with shared parameters (χ2 minimisation)

𝐸𝐺𝑀
∗ 𝑓 = 𝐸0 +෍

𝑖=𝑖

𝑛
4 𝐸𝑖 𝜂𝑖

2 𝑓2 𝜋2

𝐸𝑖
2 + 4 𝜂𝑖

2𝑓2𝜋2
+ 𝑖 ෍

𝑖=𝑖

𝑛
2 𝐸𝑖

2 𝜂𝑖 𝑓 𝜋

𝐸𝑖
2 + 4 𝜂𝑖

2𝑓2𝜋2

𝑬′(𝒇) 𝑬′′(𝒇)

𝐸𝑖, 
𝜂𝑖



Nano-DMA

• Experimental data obtained for a given frequency can be used to compute the frequency-
dependent storage (𝐸’) and loss (𝐸”) moduli as:

• Frequency spectra of storage and loss moduli can then be fitted to lumped parameter rheological 
models to derive material viscoelastic constants as previously described

Herbert EG et al, J. Phys. D. Appl. Phys. 41 (2008)



Epsilon dot method ( ሶ𝜀𝑀)

ሶ𝜺𝑴 paradigm: characterise the material viscoelastic behaviour testing samples at different 

constant strain rates ( ሶ𝜀), then analyse 𝝈(𝒕) curves within the LVR

1. Bulk test at constant ሶ𝜺

✓ Force-displacement time recording starts prior 
to sample contact → no pre-load

✓ Short test duration → no sample deterioration

✓ LVR determined through measured 𝝈-𝜺 curves

3. Lumped parameter

estimation

2. Global fitting of LVR 

stress-time (𝜎-𝑡) series 

measured at different ሶ𝜺

𝑡

𝜎

↑ ሶ𝜀

Tirella A et al., JBMR A 102 (2014)



𝜎(𝑡) response to a constant ሶ𝜀 for the ሶ𝜀𝑀 global fitting

1. Calculate the transfer function of a lumped
parameter model in the Laplace domain

𝐻𝐺𝑀 𝑠 =
ത𝜎

ҧ𝜖
= 𝐸0 +෍

𝑖=𝑖

𝑛
𝐸𝑖 𝜂𝑖 𝑠

𝐸𝑖 + 𝜂𝑖 𝑠

𝜏𝑖 = 𝜂𝑖/𝐸𝑖 ith relaxation time

2. Derive the model response to a constant ሶ𝜺
input with amplitude ሶ𝜺 in the Laplace
domain

ത𝜎 = 𝐻𝐺𝑀 𝑠 ∙
ሶ𝜺

𝒔𝟐

3. Get the 𝝈(𝒕) response through Inverse Laplace transformation

𝜎𝑖𝑛𝑑 𝑡 = ሶ𝜀𝑖𝑛𝑑 𝐸0𝑡 + 𝜂1(1 − 𝑒
−
𝐸1
𝜂1
𝑡
) + 𝜂2(1 − 𝑒

−
𝐸2
𝜂2
𝑡
)

𝜎𝑖𝑛𝑑 𝑡 = ሶ𝜀𝑖𝑛𝑑 𝐸0𝑡 + 𝜂1(1 − 𝑒
−
𝐸1
𝜂1
𝑡
)

Maxwell Standard 

Linear Solid (SLS)

2-arm generalised

Maxwell (GM2)

𝑛=1

𝑛=2

Tirella A et al., JBMR A 102 (2014)



Nano-epsilon dot method (nano- ሶ𝜀𝑀)

• Estimate material viscoelastic constant through nano-indentation at different constant 

strain rates ( ሶ𝜀𝑖𝑛𝑑), then analyse 𝝈𝒊𝒏𝒅(𝒕) curves within the LVR 

1. Nano-indentation at constant ሶ𝜺𝒊𝒏𝒅

✓ Force-displacement time recording starts prior to 
sample contact → no pre-load

✓ Short test duration → no sample deterioration

✓ LVR determined through measured 𝝈𝒊𝒏𝒅-𝜺𝒊𝒏𝒅 curves

3. Lumped parameter

estimation

2. Global fitting of LVR 

stress-time (𝜎𝑖𝑛𝑑-𝑡) series 

measured at different ሶ𝜺𝒊𝒏𝒅

𝑡

𝜎𝑖𝑛𝑑

↑ ሶ𝜀𝑖𝑛𝑑

Mattei G et al., JMBBM (2015)

ሶ𝜀𝑖𝑛𝑑



How to get 𝜎-𝜀 curves from 𝑃-ℎ measurements?

• 1st issue: identifying the initial contact point

Ideal tests should start out of contact with the sample  need of displacement-controlled experiments and post-measurement 
identification of the initial contact point

Commercial load-

controlled nano-

indenters

Load-based contact 

determination

Even small trigger load can cause 

significant pre-stress on soft 
samples

Cao Y et al., 
J Mater Res 20 (2011)

Kaufman et al., 

J Mater Res 23 (2008)



How to get 𝜎-𝜀 curves from 𝑃-ℎ measurements?

• 1st issue: our solution

Tirella A et al., JBMR A 102 (2014) Mattei G et al., J Biomech 47 (2014) Mattei G et al., JMBBM (2015)

Last point at which the 

load crosses the P-h 
abscissa during loading 

𝑷

𝒉

Unique identification of the contact 
point both when

✓ Snap into contact is poorly 

evident

✓ Noise around zero load is present



How to get 𝜎-𝜀 curves from 𝑃-ℎ measurements?

• 2nd issue: nano- ሶ𝜀𝑀 needs 𝜎𝑖𝑛𝑑(𝑡) response to constant ሶ𝜀𝑖𝑛𝑑

Most of the studies define ሶ𝜺𝒊𝒏𝒅 = ሶ𝒉/𝒉 1,2  and 𝜺𝒊𝒏𝒅 = 𝒉/𝑹 3, but…

➢ ሶ𝜺𝒊𝒏𝒅 ≠
𝝏𝜺𝒊𝒏𝒅

𝝏𝒕

➢ both ሶ𝜺𝒊𝒏𝒅 = ሶ𝒉/𝒉 and  
𝝏𝜺𝒊𝒏𝒅

𝝏𝒕
= ሶ𝒉/𝟐 𝑹𝒉 are depth-dependent functions 

1 Haghshenas M et al., Mater Sci Eng 572 (2013) 2 Maier V et al., J Mater Res 26 (2011) 3 Basu S et al., J Mater Res 21 (2006)

NOT suited for the nano- ሶ𝜺𝑴



How to get 𝜎-𝜀 curves from 𝑃-ℎ measurements?

• 2nd issue: our solution

Mattei G et al., JMBBM (2015)

𝑃 =
4

3
𝐸𝑒𝑓𝑓𝑅

Τ1 2ℎ Τ3 2

1

𝐸𝑒𝑓𝑓
=
1 − 𝜐2

𝐸
+
1 − 𝜐′

2

𝐸′
≈
1 − 𝜐2

𝐸

𝑃

𝜋𝑎2
=

4

3𝜋
𝐸𝑒𝑓𝑓

𝑎

𝑅

Hertz 

model

ℎ =
𝑎2

𝑅

Sneddon

relation

ℎ

𝑎
∙ ∙

ℎ

𝑎

𝜎𝑖𝑛𝑑 =
𝑃

𝑅 ℎ𝑅

𝜀𝑖𝑛𝑑 =
4

3 1 − 𝜐2
ℎ

𝑅

✓ 𝜎𝑖𝑛𝑑/𝜀𝑖𝑛𝑑 = 𝐸 (in case of soft materials where 𝐸′ ≫ 𝐸)

✓ ሶ𝜀𝑖𝑛𝑑 =
𝜕𝜀𝑖𝑛𝑑

𝜕𝑡
=

4

3 1−𝜐2

ሶℎ

𝑅
A constant indentation rate ( ሶℎ) 

yields a constant strain rate ( ሶ𝜀𝑖𝑛𝑑) 



An example: PDMS and gelatin characterisation

• 2 different samples: PDMS (Sylgard 184, 10:1 base to catalyst), 5% w/v gelatin (type A)

• Constant ሶ𝜺𝒊𝒏𝒅 tests in dH2O at RT using the PIUMA Nanoindenter (Optics11)

• Measurements started above the sample surface to avoid pre-stress (different tests on different
surface points spaced by 200 µm)

Manual 

z-stage

Indentation

z-stage

On-board 

microscope

Sample

xy-stage

Probe

Sample

in Petri 

dish

ሶℎ =
4

3 1 − 𝜐2
ሶ𝜀𝑖𝑛𝑑
𝑅

Indentation rate ሶℎ to obtain a 

given indentation strain rate ሶ𝜀𝑖𝑛𝑑



Indentation stress-strain curves at different ሶ𝜀𝑖𝑛𝑑

• Tests at 4 different indentation strain rates (n = 10 per each ሶ𝜀𝑖𝑛𝑑)

PDMS
(𝑅 = 64 µm, 𝑘 = 13.4 N/m)

Gelatin
(𝑅 = 70 µm, 𝑘 = 0.55 N/m)

✓ LVR up to 10% 𝜺𝒊𝒏𝒅
✓ Fairly rate-independent behaviour

✓ LVR up to 10% 𝜺𝒊𝒏𝒅
✓ Pronounced rate-dependent behaviour

↑ ሶ𝜀𝑖𝑛𝑑↑ ሶ𝜀𝑖𝑛𝑑

ሶ𝜀𝑖𝑛𝑑 ሶ𝜀𝑖𝑛𝑑



Viscoelastic lumped parameter estimation

• Indentation stress-time data within LVR obtained at different ሶ𝜺𝒊𝒏𝒅 were analysed with ሶ𝜺𝑴
global fitting procedure sharing the viscoelastic parameters to estimate

𝜎𝑖𝑛𝑑 𝑡 = ሶ𝜀𝑖𝑛𝑑 𝐸0𝑡 + 𝜂1(1 − 𝑒
−
𝐸1
𝜂1
𝑡
) + 𝜂2(1 − 𝑒

−
𝐸2
𝜂2
𝑡
)

𝜎𝑖𝑛𝑑 𝑡 = ሶ𝜀𝑖𝑛𝑑 𝐸0𝑡 + 𝜂1(1 − 𝑒
−
𝐸1
𝜂1
𝑡
)

Maxwell Standard 

Linear Solid (SLS)

2-arm generalised

Maxwell (GM2)



Global fitting results

Viscoelastic parameters estimated using the nano- ሶ𝜀𝑀 (est. value ± standard error)

PDMS Gelatin

Parameter Maxwell SLS GM2 Maxwell SLS GM2

𝐸𝑖𝑛𝑠𝑡 (kPa) 1.74∙103 ± 1.47∙101 1.74∙103 ± 1.02∙102 14.08 ± 0.58 14.08 ± 1.37∙103

𝐸𝑒𝑞 (kPa) 8.82∙102 ± 8.72∙10-1 5.98∙102 ± 7.14∙101 1.84 ± 0.42 4.07∙10-4 ± 4.65∙102

𝜏1 (s) 0.26 ± 4.93∙10-3 0.26 ± 4.93∙10-3 6.90 ± 0.60 14.78 ± 2.36∙103

𝜏2 (s) - 1.04∙1012 ± 3.68∙1011 - 5.57 ± 1.36∙103

𝑅2 0.97 0.97 0.99 0.99

Values in red cannot be considered as significant since they are almost meaningless with 
very large standard errors, clearly indicating GM2 model over-parameterisation



Advantages of the nano- ሶ𝜀𝑀

Oliver-Pharr
Oliver W, Pharr G, J Mater Res 7, 1564-83 (1992) 

Nano-DMA

• Elastic-plastic contact model

• Analysis based on the unloading curve using 

𝑷𝒎𝒂𝒙, 𝒉𝒎𝒂𝒙 and unloading slope 𝑺

• Characterises material elastic properties only

𝑺 < 0 !!!

Not suited for time-dependent

viscoelastic materials!

Tang B et al., 

J Mater Res 18 (2003)

Loss and storage modulus of fresh and frozen articular porcine 

cartilage. (Franke O et al., Mat Sci Eng C 31 (2011))

• Micro-scale equivalent of the bulk DMA

• CSM reduces the reliance on unloading curve and 

provide results as a function of indentation depth

• Need a small but measureable trigger force

Mattei G et al., 

J Biomech 47 (2014)

Soft 
sample

Trigger force

un-avoidable pre-stress

Not suited for very soft tissues 

and (bio)materials!



Advantages of the nano- ሶ𝜀𝑀

• Mechanical properties representative of the “virgin” material

• Constant derived (visco)elastic parameters, regardless of the max load (or 

displacement) chosen for the experiment

• During unloading only the elastic displacements are recovered

Pathak et al., 

J Europ Cer Soc 28 (2008)

Linear

region Oliver-Pharr

Loading 𝝈-𝜺



Micro- vs. macro-scale results?

SLS viscoelastic parameters obtained at the micro- and macro-scale* (est. value ± standard error)
* macro-scale values are taken from Tirella A et al., JBMR A 102 (2014)

PDMS Gelatin

Parameter
Micro-scale 

(nano- ሶ𝜀𝑀)

Macro-scale

( ሶ𝜀𝑀) 1

Micro-scale 

(nano- ሶ𝜀𝑀)

Macro-scale

( ሶ𝜀𝑀) 1

𝐸𝑖𝑛𝑠𝑡 (kPa) (1.74 ± 0.01)∙103 (2.55 ± 0.04)∙103 14.08 ± 0.58 11.23 ± 0.45

𝐸𝑒𝑞 (kPa) (8.82 ± 0.01)∙102 (2.14 ± 0.01)∙103 1.84 ± 0.42 2.43 ± 0.10

𝜏1 (s) 0.26 ± 0.01 0.66 ± 0.25 6.90 ± 0.60 4.85 ± 0.19

<

<

><

>

<

• 𝝉𝟏 decrease from macro- to micro-scale observed for PDMS is consistent with literature 1,2,3

• Variations between results at the micro- and macro-scale may be due to

- real differences between the bulk and surface mechanical properties 1

- nano-indentation 𝝈𝒊𝒏𝒅 and 𝜺𝒊𝒏𝒅 are not the same as engineering 𝝈 and 𝜺

1 Kaufman J et al., J Mater Res 23 (2008) 2 Sasaki S et al., J Chem Phys 120 (2004) 3 Mak A et al., J Biomech (1987)



Conclusions

• The nano- ሶ𝜺𝑴

– combines the advantages of the ሶ𝜺𝑴 and nano-indentation techniques

– allows to locally map the viscoelastic properties of “virgin” materials in absence of pre-stress,
being advantageous over methods based on the unloading curve or requiring a force trigger

– very suited for soft biological tissues and biomaterials

– can be implemented with any displacement-controlled nano-indenter (e.g. Optics 11 PIUMA)

Mattei G et al., JMBBM (2015)



Does measuring in the frequency or 

strain-rate domain affect mechanical 

results?



Material mechanical properties

• Little consensus in the literature

S Marchesseau et al, Progr in Biophys and Mol Biol 103:185-96 (2010) G Mattei and A Ahluwalia, Acta Biom 45:60-71 (2016)



From sample mechanical behaviour to properties

Sample

Mechanical

behaviour

Testing type and method

𝜎

𝜀

ሶ𝜀

𝑡

𝜎 𝑓

DMA output

ሶ𝜀𝑀 output

Measured mechanical

behaviour (raw data)

... 

𝐸𝑎𝑝𝑝

ሶ𝜀

𝑓

𝐸′

𝐸′′

𝐸

Apparent modulus

Storage & Loss moduli

Mechanical properties

... 

𝑡

𝜀

ሶ𝜀

Bulk

Indentation

Frequency 

(DMA)

Strain rate ( ሶ𝜀𝑀)

... ... 

𝑡

𝜀 𝑓

Type Method

Analysis

model

L Bartolini et al, Sci Rep 8:13697 (2018)



From sample mechanical behaviour to properties
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L Bartolini et al, Sci Rep 8:13697 (2018)



Aim and Strategy

Does measuring in the frequency
or strain-rate domain affect 
micro-mechanical properties?

𝐸𝑎𝑝𝑝

ሶ𝜀

𝑓

𝐸′

𝐸′′

𝐸

Apparent modulus

Storage & Loss moduli

Virgin

Pre-strained

DMA nano- ሶ𝜀𝑀
H van Hoorn et al, 

Soft Matter 12:3066-73 

(2016)

G Mattei et al, 

JMBBM 50:150-9 
(2015)

L Bartolini et al, Sci Rep 8:13697 (2018)



PDMS mechanical properties

• PDMS (Sylgard 184, 50:1) samples tested at 25°C with a 248 μm radius probe 

Consistent with CA Charitidis, 

Ind Eng Chem Res 50:565-570 (2011)

DMA (frequency domain) nano- ሶ𝜀𝑀 (strain-rate domain)

L Bartolini et al, Sci Rep 8:13697 (2018)



Comparing DMA and nano- ሶ𝜀𝑀 results

• Conversion from 𝒇 to ሶ𝜺 domain based on SE Zeltman et al, Polymer 101:1-6 (2016), assuming 1 𝒇𝒄 or 𝝉

1)  Storage modulus master curve from DMA data

𝑬′ 𝝎 = 𝑎 ∙ tanh 𝑏 ∙ ln 𝜔 + 𝑐 + 𝑑 𝜔 = 2π𝑓

2)  𝐸′ 𝜔 converted into time-domain relaxation modulus

𝑬 𝒕 =
2

𝜋
න
0

∞𝐸′ 𝜔

𝜔
𝑠𝑖𝑛 𝜔𝑡 𝜕𝜔

3) Stress-time response to a given strain history 

𝝈 𝒕 = 𝐸 ∗ 𝜕𝜀 = න
−∞

𝑡

𝐸 𝑡 − 𝜏
𝜕𝜀 𝜏

𝜕𝜏
𝜕𝜏 𝜎 𝑡 = ሶ𝜀 න

0

𝑡

𝐸 𝜏 𝜕𝜏

4) Stress-strain response by linear transformation of 𝜀 = ሶ𝜀 ∙ 𝑡

𝑬𝒂𝒑𝒑,𝑫𝑴𝑨( ሶ𝜀) as stress-strain slope within LVR

constant ሶ𝜀
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Results: 𝑬𝒂𝒑𝒑,𝑫𝑴𝑨 vs 𝑬𝒂𝒑𝒑,𝑷

• DMA-derived apparent elastic moduli (𝑬𝒂𝒑𝒑,𝑫𝑴𝑨) versus nano- ሶ𝜀𝑀 pre-strained ones (𝑬𝒂𝒑𝒑,𝑷)

• Increase with strain rate (as expected)

• 𝑬𝒂𝒑𝒑,𝑷 > 𝑬𝒂𝒑𝒑,𝑫𝑴𝑨, regardless of ሶ𝜀

• Optimal correlation (r = 0.99) with almost

constant difference between moduli (~10%)
(consistent with SE Zeltman et al, Polymer 101:1-6, 2016)

o Good agreement between 𝒇 and ሶ𝜺 results

o Systematic error possibly due to narrow f

range attainable by our setup (0.1-10 Hz)

2% increase in d resulted in:
- small master-curve transition upward
- almost perfect match of the moduli

L Bartolini et al, Sci Rep 8:13697 (2018)



Conclusions

• Frequency and strain-rate domain results directly compared, without any other source of variability

The observed compatibility allows to combine these methods towards a more

comprehensive understanding of material viscoelastic (time-dependent) behaviour,

critical for several applications (biomechanics, tissue engineering, mechanobiology, …)

L Bartolini et al, Sci Rep 8:13697 (2018)
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