Allometry

Arti Ahluwalia

Allometric scaling $Y = aM^b$

- Known as the science of scaling in biology
- Has been studied since 1930
- Body parameters are related to mass through power laws

Parameter Y	b
Metabolism	3/4
Cell number	1
Flow rate	1/4

Isometric Scaling

 Proportional scaling, i.e if mass doubles, mass of head, and other organs also doubles. If overall length increases, then all limbs increase proportionately..

BMR / mass relationship, b=3/4

5

Bone mass

 $Y = aM^b$

b	Significance	Example (<i>b</i> value)		
0	Parameter does not change with body	Bone density in mammals, cell		
	mass	radius		
1	Parameter changes in direct	Body volume, cell number		
	proportion with body mass			
0 <b<1< th=""><th>Parameter increases at a slower rate</th><th>Metabolic rate (3/4), blood flow</th></b<1<>	Parameter increases at a slower rate	Metabolic rate (3/4), blood flow		
	than body mass	rate (3/4), external surface area		
		(2/3), life span (1/4)		
>1	Parameter increases at a faster rate	Bone mass (4/3)		
	than body mass			
<0	Parameter increases with body mass	Almost all frequencies or rates		
		(cardiac frequency, respiratory		
		frequency, -1/4)		

Table 1. Values of allometric exponents for variables of the mammalian cardiovascular and respiratory systems predicted by the model compared

, .

with empirical observations. Observed values of exponents are taken from (2, 3); ND denotes that no data are available.

. .

Cardiovascular				Respiratory		
Mariable	Exponent			Exponent		
Variable	Predicted	Observed	Vanable	Predicted	Observed	
Aorta radius r_0 Aorta pressure Δp_0 Aorta blood velocity u_0 Blood volume V_b Circulation time Circulation distance / Cardiac stroke volume Cardiac frequency ω Cardiac output \dot{E} Number of capillaries N_c Service volume radius Womersley number α Density of capillaries O_2 affinity of blood P_{50} Total resistance Z Metabolic rate B	3/8 = 0.375 0 = 0.00 0 = 0.00 1 = 1.00 1/4 = 0.25 1/4 = 0.25 1/4 = -0.25 3/4 = 0.75 3/4 = 0.75 1/12 = 0.083 1/4 = 0.25 -1/12 = -0.083 -1/12 = -0.083 -3/4 = -0.75 3/4 = 0.75	0.36 0.032 0.07 1.00 0.25 ND 1.03 -0.25 0.74 ND ND 0.25 -0.095 -0.089 -0.76 0.75	Tracheal radius Interpleural pressure Air velocity in trachea Lung volume Volume flow to lung Volume of alveolus V_A Tidal volume Respiratory frequency Power dissipated Number of alveoli N_A Radius of alveolus r_A Area of alveolus A_A Area of lung A_L O_2 diffusing capacity Total resistance O_2 consumption rate	3/8 = 0.375 0 = 0.00 0 = 0.00 1 = 1.00 3/4 = 0.75 1/4 = 0.25 1 = 1.00 -1/4 = -0.25 3/4 = 0.75 3/4 = 0.75 1/12 = 0.083 1/6 = 0.083 1/6 = 0.083 1/12 = 0.92 1 = 1.00 -3/4 = -0.75 3/4 = 0.75	0.39 0.004 0.02 1.05 0.80 ND 1.041 -0.26 0.78 ND 0.13 ND 0.95 0.99 -0.70 0.76	

http://www.sciencemag.org • SCIENCE • VOL. 276 • 4 APRIL 1997

125

. ·