Teoria dei Sistemi — 15-01-2016

Si consideri il sistema di Figura 1. Esso è composto da tre corpi: all'estremità di un pendolo inverso è incernierato un telaio nel quale alloggia una ruota giroscopica. Si indichi con θ l'inclinazione del pendolo rispetto all'asse verticale $x \in \operatorname{con} \varphi$ la rotazione dell'asse della ruota rispetto al piano xz ($\theta \in \varphi$ positivi in Figura 1). Si consideri inoltre che la ruota giri attorno al suo asse (di versore \vec{a}) ad una velocità Ω , e che i corpi siano soggetti alla forza di gravità diretta nel verso opposto all'asse x.

Figura 1: Sistema dinamico.

Per valori di $\Omega \neq 0$ si assiste ad un interessante fenomeno noto come tendenza al parallelismo dell'asse giroscopico: una variazione della direzione dell'asse della ruota $(d\vec{a}/dt)$ dà vita ad una coppia $\vec{\tau}_g$ avente la medesima direzione $(d\vec{a}/dt \parallel \vec{\tau}_g)$ ed agente sulla ruota stessa (Figura 1). Secondo questo principio, interponendo tra il pendolo ed il telaio un motore che eroghi una coppia τ_{φ} in grado di ruotare l'asse giroscopico \vec{a} , è possibile controllare la posizione θ del pendolo. (Questo fenomeno è ad esempio sfruttato nel controllo d'assetto della Stazione Spaziale Internazionale, il cui modulo Zvezda utilizza 4 giroscopi da 270 kg ciascuno.)

Le equazioni che governano la dinamica del sistema di Figura 1 sono le seguenti:

$$\begin{bmatrix} I_1 + I_3 + (I_4 - I_3)\sin^2(\varphi) \end{bmatrix} \theta + \theta \dot{\varphi} (I_4 - I_3)\sin(2\varphi) - \Omega \dot{\varphi} I_5 \cos(\varphi) - G \sin(\theta) = \tau_{\theta}$$
$$I_2 \ddot{\varphi} - \frac{\dot{\theta}^2 (I_4 - I_3)\sin(2\varphi)}{2} + \Omega \dot{\theta} I_5 \cos(\varphi) = \tau_{\varphi},$$

dove i termini indicati con la lettera I sono momenti di inerzia (somme di molteplici contributi), $G\sin(\theta)$ rappresenta il momento delle forza peso complessiva del sistema e τ_{θ} è una coppia di disturbo.

Si risponda alle seguenti richieste:

- A.1 Fissato $\tau_{\theta} = 0$, si identifichino le configurazioni di equilibrio statico del sistema. Tra tutte le condizioni di equilibrio trovate, si scelga quella tale per cui $\theta \in (-\pi, \pi)$ e, nel caso in cui essa non dipenda da φ , si utilizzi per i punti successivi $\varphi = 0$.
- A.2 Supponendo di disporre della misura dell'angolo θ , si determini una rappresentazione in forma di stato del sistema linearizzato attorno alla configurazione di equilibrio determinata in precedenza. Si discuta la stabilità del sistema linearizzato al variare di $\Omega \in [0, +\infty)$. In particolare si mostri l'esistenza di un valore di transizione ($\Omega = \overline{\Omega}$) superato il quale si assiste ad una variazione della tipologia dei modi propri del sistema.
- **A.3** Si considerino i segenti valori numerici: $I_1 = 1.251 \times 10^{-1} \text{ kg m}^2$, $I_2 = 4.044 \times 10^{-4} \text{ kg m}^2$, $I_3 = 4.386 \times 10^{-4} \text{ kg m}^2$, $I_4 = 6.773 \times 10^{-4} \text{ kg m}^2$, $I_5 = 5.777 \times 10^{-4} \text{ kg m}^2$, G = 3.093 N m e $\Omega = \overline{\Omega}/2$.

Si scrivano le matrici numeriche del sistema linearizzato in forma di stato. Si ricavino le funzioni di trasferimento tra: l'ingresso di controllo $u = \tau_{\varphi}$ e l'uscita $y = \theta$, l'ingresso di disturbo $u_d = \tau_{\theta}$ e l'uscita $y = \theta$. Verificare che il risultato abbia approximativamente la forma

$$G(s) = \frac{Y(s)}{U(s)} = \frac{300}{s(s-4)(s+4)}$$
$$G_d(s) = \frac{Y(s)}{U_d(s)} = \frac{8}{(s-4)(s+4)}$$

in caso negativo, per i punti successivi, è possibile utilizzare le funzioni di trasferimento qui fornite.

A.4 Si sintetizzi un controllore stabilizzante in grado di assolvere i seguenti compiti:

- Portare il sistema esattamente in posizione verticale, a partire dalla condizione iniziale $\theta(0) = -8.3^{\circ}$. Si faccia inoltre in modo che durante l'evoluzione (a causa della presenza di un ostacolo) l'inclinazione del pendolo non superi mai il valore di $\theta_{max} = 0.5^{\circ}$ e che il pendolo entri (senza più uscirne) nell'intervallo $\theta \in [-0.415^{\circ}, 0.415^{\circ}]$ entro un tempo pari a 0.38 s,.
- Si consideri il caso in cui il pendolo sia incernierato ad una base mobile vibrante. Modellando (in prima approssimazione) gli effetti del movimento della base come una coppia $\tau_{\theta} = \sum_{i} A_{i} \sin(\omega_{i}t)$ dove $A_{i} \leq 10.0$ Nm $\forall i \in \omega_{i} \leq 0.5$ rad/s $\forall i$; si vuole che a regime l'inclinazione del pendolo rimanga contenuta nell'intervallo $\theta \in [-0.1^{\circ}, 0.1^{\circ}]$.

Si riportino quindi:

- le specifiche tradotte nel dominio della frequenza e visualizzate sul diagramma di Bode,
- il procedimento di progettazione del controllore illustrato con diagrammi a blocchi,
- la funzione di trasferimento del controllore progettato,
- i diagrammi di Bode del sistema nelle diverse fasi del progetto (mostrando il raggiungimento delle specifiche),
- la risposta al gradino del sistema controllato riportando le caratteristiche più significative.

Nota: Si riportino tutti i risultati numerici con almeno 3 cifre significative

Soluzione

A.1 Imponendo
$$\theta = \ddot{\varphi} = \theta = \dot{\varphi} = \tau_{\theta} = 0$$
 le equazioni del moto si riducono a

$$\sin(\theta) = 0$$
$$\tau_{\varphi} = 0$$

Si seleziona $\theta = 0 \in (-\pi, \pi)$ e, non essendovi dipendenza da $\varphi, \varphi = 0$ come suggerito nel testo.

A.2 Indicando con: $x = [x_1 \ x_2 \ x_3 \ x_4]^{\top} = [\theta \ \varphi \ \dot{\theta} \ \dot{\varphi}]^{\top}$ il vettore delle variabili di stato, $u = \tau_{\varphi}$ l'ingresso di controllo, $u_d = \tau_{\theta}$ l'ingresso di disturbo e $y = \theta$ l'uscita del sistema; il sistema non lineare assume la seguente forma di stato:

$$\begin{aligned} \dot{x}_1 &= x_3 \\ \dot{x}_2 &= x_4 \\ \dot{x}_3 &= -\frac{x_3 x_4 (I_4 - I_3) \sin(2x_2) + \Omega x_4 I_5 \cos(x_2) + G \sin(x_1) + u_d}{\left[I_1 + I_3 + (I_4 - I_3) \sin^2(x_2)\right]} \\ \dot{x}_4 &= \frac{x_3^2 (I_4 - I_3) \sin(2x_2) - 2\Omega x_3 I_5 \cos(x_2) + 2u}{2I_2}. \end{aligned}$$

Linearizzando queste equazioni attorno alla condizione di equilibrio individuata in precedenza si ottiene

$$\dot{x} = Ax + Bu + B_d u_d = \begin{bmatrix} 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ \frac{G}{I_1 + I_3} & 0 & 0 & \frac{\Omega I_5}{I_1 + I_3}\\ 0 & 0 & \frac{-\Omega I_5}{I_2} & 0 \end{bmatrix} x + \begin{bmatrix} 0\\ 0\\ 0\\ \frac{1}{I_2} \end{bmatrix} u + \begin{bmatrix} 0\\ 0\\ \frac{1}{I_1 + I_3}\\ 0 \end{bmatrix} u_d.$$

Per quanto rigurda l'uscita del sistema, si ha

$$y = Cx = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x$$

Al fine di analizzare la stabilità del sistema linearizzato è necessario calcolare il polinomio caratteristico della matrice dinamica A:

$$\pi(\lambda, \Omega) = \det(A - \lambda I) = \lambda^2 \left[\lambda^2 - \frac{GI_2 - \Omega^2 I_5^2}{I_2(I_1 + I_3)} \right]$$

Imponendo $\pi(\lambda, \varOmega)=0,$ si ricavano gli autovalori del sistema

$$\lambda_1 = \lambda_2 = 0, \quad \lambda_3 = -\lambda_4 = \sqrt{\frac{GI_2 - \Omega^2 I_5^2}{I_2(I_1 + I_3)}}.$$

Si prospettano pertanto tre possibilità:

- a) $GI_2 > \Omega^2 I_5^2 \Rightarrow 2$ autovalori nell'origine e 2 autovalori sull'asse reale (uno positivo, l'altro negativo);
- b) $GI_2 < \Omega^2 I_5^2 \Rightarrow 2$ autovalori nell'origine e 2 autovalori immaginari coniugati;
- c) $GI_2 = \Omega^2 I_5^2 \Rightarrow 4$ autovalori nell'origine.

Tra questi autovalori, gli unici di cui non è possibile verificare immediatamente gli associati modi propri sono quelli nell'origine. Pertanto, al fine di concludere sull'instabilità del sistema, è necessario calcolare la molteplicità geometrica degli autovalori $\lambda = 0$:

$$\nu_{\lambda=0} = \dim(\ker(A - \lambda I)) \equiv \dim(\ker(A)) = 1 \quad \forall \Omega$$

Ne segue che il blocco della matrice di Jordan associato agli autovalori $\lambda = 0$ è: nei casi a) e b)

$$J_{\lambda=0} = \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix},$$

nel caso c)

$$J_{\lambda=0} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

L'analisi modale per i vari casi è in definitiva la seguente:

- a) 2 modi propri polinomiali t^k con $0 \le k \le 1$ e $k \in \mathbb{Z}$ (associati agli autovalori λ_1 e λ_2) di cui uno stabile e uno instabile, 2 modi propri esponenziali semplici $e^{\lambda t}$ di cui uno instabile (associato a λ_3) e uno stabile (associato a λ_4);
- b) 2 modi propri polinomiali t^k con $0 \le k \le 1$ e $k \in \mathbb{Z}$ (associati agli autovalori λ_1 e λ_2) di cui uno stabile e uno instabile, 2 modi propri limitati ma non convergenti $\cos(\omega t)$ e $\sin(\omega t)$ (associati agli autovalori λ_3 e λ_4);
- c) 4 modi propri polinomiali t^k con $0 \le k \le 3$ e $k \in \mathbb{Z}$ di cui uno stabile e tre instabili.

Si conclude pertanto che il sistema linearizzato è instabile $\forall \Omega$, mentre la velocità angolare di transizione è quella relativa al caso c): $\bar{\Omega} = \sqrt{GI_2}/I_5$.

A.3 Sostituendo i valori numerici forniti, si ottiene $\Omega = \overline{\Omega}/2 = 30.61$ rad/s. Le matrici numeriche del sistema linearizzato sono

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 24.64 & 0 & 0 & 0.1409 \\ 0 & 0 & -43.73 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2473 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}.$$

La funzione di trasferimento tra l'ingresso di controllo $u=\tau_{\varphi}$ e l'uscita $y=\theta$ è

$$G(s) = \frac{348.3}{s(s-4.299)(s+4.299)}$$

mentre la funzione di trasferimento tra l'ingresso di disturbo $u_d = \tau_{\theta}$ e l'uscita $y = \theta$ è

$$G_d(s) = \frac{7.966}{(s - 4.299)(s + 4.299)}$$

A.4 Un primo controllore stabilizzante puó essere ottenuto mediante l'utilizzo del luogo delle radici. In figura 2 è visibile il luogo delle radici del sistema in anello aperto.

Figura 2: Luogo delle radici del sistema in anello aperto.

Un possibile controllore stabilizzante può essere ottenuto mediante una doppia rete anticipatrice, ed è dato da:

$$C_1(s) = \frac{1 + 0.47s + (0.33s)^2}{(1 + 0.001s)(1 + 0.001s)}$$

Diverse configurazioni sono possibili (due coppie di zeri e poli complessi coniugati o reali). Una scelta alternativa è data dal controllore $C_1^B(s)$:

$$C_1^B(s) = \frac{750(s+1)(s+10)}{(s+100)^2}$$

Con i controllori $C_1(s) \in C_1^B(s)$ si ottengono, rispettivamente, i luoghi delle radici mostrati in figura 3 e figura 4.

Figura 3: Luogo delle radici del sistema in anello chiuso con controllore $C_1(s)$ inserito. A destra, dettaglio nell'intorno dell'origine.

Figura 4: Luogo delle radici del sistema in anello chiuso con controllore $C_1^B(s)$ inserito. A destra, dettaglio nell'intorno dell'origine.

Le rispettive funzioni di trasferimento a seguito della chiusura del primo anello di controllo con il controllore $C_1(s)$ sono:

$$G_2(s) = \frac{3.8704e07(s^2 + 4.2s + 9)}{(s + 1181)(s + 777.5)(s + 37.94)(s^2 + 3.852s + 10)}$$
$$G_{d2}(s) = \frac{G_{d1}(s)}{1 + C_1(s)G_1(s)} = \frac{7.9658s(s + 1000)^2}{(s + 1181)(s + 777.5)(s + 37.94)(s^2 + 3.852s + 10)}$$

Si passa quindi a sintetizzare il secondo controllore $C_2(s)$ affinchè il sistema approssimato ad un sistema del secondo ordine, rispetti le specifiche.

- Si vuole portare il sistema dal valore di $\theta(0) = -8.3^{\circ}$ al valore di regime desiderato $\theta_{REF} = 0^{\circ}$. Il gradino del segnale di riferimento in ingresso al sistema ha dunque ampiezza $\theta_{STEP} = 8.3^{\circ}$.
- Il valore massimo dell'uscita è pari a $\theta_{MAX} = 0.5^{\circ}$, da cui si può ricavare la sovrealengazione massima percentuale come:

$$S_{\%} = \frac{\theta_{MAX} - \theta_{REF}}{\theta_{REF} - \theta(0)} 100 = 6.02\%$$

La specifica sulla sovraelongazione si impone tramite

Figura 5: Diagramma a blocchi del sistema.

$$S_{\%} = 100e^{-\frac{\pi\delta}{\sqrt{1-\delta^2}}} \le 6.02\%$$

Da cui

$$\delta > 0.666 \implies M_{\phi} \simeq 100 \, \delta = 66.6^{\circ}$$

• Si vuole che l'uscita entri in un intervallo di $[-0.415^{\circ}, 0.415^{\circ}]$, senza più uscirne, dopo 0.38 secondi. L'intervallo, simmetrico rispetto al valore θ_{REF} , ha una ampiezza percentuale di:

$$tol_{PERC} = 5\%$$

rispetto al valore di regime. La specifica sulla pulsazione di taglio w_T è:

$$T_{a5} \simeq \frac{-\ln(\frac{5}{100}) - \frac{1}{2}\ln(1 - \delta^2)}{\delta \,\omega_T} \implies \omega_T > 12.9864 \,\mathrm{rad/s}$$

• Si desidera che l'errore a regime vada a zero in assenza di disturbi: il soddisfacimento di tale specifica è garantito con un controllore del tipo:

$$C(s) = \frac{K}{s^t} C_0(s), \text{ con } C_0(0) \ge 1 \text{ e } t > 1.$$

A.4.2 Si richiede che un disturbo $\tau_{\theta} = \sum_{i} A_{i} \sin(\omega_{i}t)$ dove $A_{i} \leq 4.0$ Nm $\forall i \in \omega_{i} \leq 0.5$ rad/s $\forall i$ non produca a regime un errore superiore a $\pm 10^{\circ}$.

Applichiamo il teorema della risposta armonica. La funzione di trasferimento tra la trasformata $D(j\omega)$ del disturbo e la trasformata $Y(j\omega)$ dell'uscita è data da

$$Y(j\omega) = \frac{G_{d2}(j\omega)}{1 + C_2(j\omega)G_2(j\omega)} D(j\omega) = \bar{G}(j\omega)D(j\omega),$$

dove

$$G_{d2}(j\omega) = \frac{G_d(j\omega)}{1 + C_1(j\omega) G_1(j\omega)}$$

è la f.d.t. tra il disturbo e l'uscita dopo l'inserimento del controllore stabilizzante.

La componente dell'uscita dovuta ad un disturbo sinusoidale ad una frequenza generica ω_k sarà quindi del tipo

$$y(t) = |G(j\omega_k)| |D(j\omega_k)| \sin(t + \angle G(j\omega_k)).$$

Facendo riferimento al caso cautelativo in cui $\sin(\omega_k t + \angle \bar{G}(j\omega_k)) = 1$, e considerando di maggiorare il modulo $|\bar{G}(j\omega)|$ con il suo valore massimo nel range di frequenze d'interesse, il modulo della componente sinusoidale del disturbo da considerare è pari a 10 Nm.

Il controllo deve dunque essere scelto in modo tale che

$$|\bar{G}(j\omega)| = \frac{|G_{d2}(j\omega)|}{|1 + C_2(j\omega)G_2(j\omega)|} \le \frac{0.1\frac{\pi}{180}}{10} = 1.7453 \cdot 10^{-4} \quad \forall \, \omega \le \omega_d \,,$$

dove ω_d viene scelta come la massima frequenza del disturbo, ovvero 0.5 rad/s.

Poichè a bassa frequenza è ragionevole applicare l'approssimazione $|1+C_2(j\omega) G_2(j\omega)| \approx |C_2(j\omega) G_2(j\omega)|$, il controllore deve soddisfare

$$|C_2(j\omega) G_2(j\omega)| \ge \frac{|G_{d2}(j\omega)|}{0.01}.$$

Figura 6: Diagramma di Bode della f.d.t. $G_{d2}(s)$.

Notando infine che nel campo frequenziale d'interesse (vedi figura 6) si ha $|G_{d2}(j\omega)| < -37$ dB e 20 $\log_{10} 0.01$) = 40 dB, il guadagno d'anello per soddisfare questa specifica deve essere superiore a -37 - (-40) = 3 dB per frequenze minori di 0.1 rad/s.

La figura 7 mostra il diagramma di Bode di $G_2(s)$ con le specifiche sul guadagno statico e sul guadagno in bassa frequenza che devono essere rispettate per l'errore a regime e l'attenuazione dei disturbi.

Figura 7: Diagrammi di Bode della f.d.t. $G_2(s)$ con le specifiche da rispettare.

Il controllore può essere progettato anzitutto inserendo un integratore per la specifica di valore a regime. Poi si modula il guadagno e si aumenta la banda passante del sistema in anello chiuso per mezzo di una rete anticipatrice.

Un controllore che permette al sistema di rispettare tutte le specifiche, compresa la causalità, è il seguente:

$$C_2(s) = \frac{50(0.1s+1)}{s(0.0001s+1)}.$$

nel quale si è provveduto ad inserire un integratore, aumentare il guadagno per soddisfare alle specifiche di bassa frequenza ed aggiungere una rete anticipatrice per soddisfare le specifiche sulla pulsazione di taglio e margine di fase. Il sistema chiuso in retroazione col nuovo controllore risulta essere:

$$G_{2cl}(s) = \frac{1.9352e12(s+10)(s^2+4.2s+9)}{(s+9998)(s+1428)(s+8.716)(s^2+4.257s+9.106)(s^2+561s+1.537e05)}$$

In figura 8 si mostra il diagramma di Bode del sistema con il controllore $C_2(s)$ inserito.

Per questo sistema sono riportate la risposta al gradino in figura 9 e la risposta al disturbo in figura 10.

A.5 La scelta $\varphi = 0$ è motivata dal fatto che l'accoppiamento dinamico delle due equazioni del moto (principalmente dovuto all'effetto giroscopico, dal momento che $\Omega \gg \dot{\theta}$ e che $(I_4 - I_3) \approx I_5$) varia con $\cos(\varphi)$.

Figura 8: Diagrammi di Bode del sistema in anello chiuso, con le specifiche in evidenza.

Per questo motivo la capacità di controllare l'inclinazione θ del pendolo, tramite l'ingresso τ_{φ} , è massima per $\varphi = k\pi$ ed è praticamente nulla per $\varphi = k\pi + \pi/2$ (con $k \in \mathbb{Z}$). La condizione $(I_4 - I_3) \ll I_1$ ci indica come il termine inerziale, nell'equazione del moto relativa al grado di libertà θ , sia sostanzialmente indipendente da φ e pertanto non influenzi la capacità di controllare θ .

Figura 9: Risposta allo scalino del sistema in anello chiuso.

Figura 10: Risposta al disturbo del sistema in anello chiuso.